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Phase ordering with a global conservation law: Ostwald ripening and coalescence

Massimo Conti,1 Baruch Meerson,2 Avner Peleg,2 and Pavel V. Sasorov3

1Dipartimento di Matematica e Fisica, Universita` di Camerino, and Istituto Nazionale di Fisica della Materia, 62032 Camerino, Ital
2The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

3Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
~Received 11 September 2001; published 2 April 2002!

Globally conserved phase ordering dynamics is investigated in systems with short range correlations att
50. A Ginzburg-Landau equation with a global conservation law is employed as the phase field model. The
conditions are found under which the sharp-interface limit of this equation is reducible to the area-preserving
motion by curvature. Numerical simulations show that, for both critical and off-critical quench, the equal-time
pair correlation function exhibits dynamic scaling, and the characteristic coarsening length obeysl (t);t1/2. For
the critical quench, our results are in excellent agreement with earlier results. For off-critical quench~Ostwald
ripening! we investigate the dynamics of the size distribution function of the minority phase domains. The
simulations show that, at large times, this distribution function has a self-similar form with growth exponent
1/2. The scaled distribution, however, strongly differs from the classical Wagner distribution. We attribute this
difference to coalescence of domains. A theory of Ostwald ripening is developed that takes into account binary
coalescence events. The theoretical scaled distribution function agrees well with that obtained in the
simulations.
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I. INTRODUCTION

Phase ordering is emergence of order from disor
through domain growth and coarsening. The standard se
when phase ordering occurs is a temperature quench fro
high-temperature disordered phase into a two-phase
multiphase region. Phase ordering has been the subje
extensive research during the last two decades@1#. An im-
portant simplifying assumption in phase ordering theory
dynamic scale invariance. According to this assumption,
coarsening system possesses, at late times, a single rel
dynamic length scalel (t) ~the characteristic domain size!
that grows with time asl (t);ta @1#. It is by now well estab-
lished that in systems with short range correlationsa51/2
for nonconserved~model A! dynamics, whilea51/3 for lo-
cally conserved~model B! dynamics.

There is, however, an important additional coarsen
mechanism:globally conservedphase ordering@2–7#. Glo-
bally conserved dynamics can be thought of as model A
namics constrained by global conservation of the order
rameter: for example, Ising model with fixed magnetizatio
This global conservation law is maintained by an exter
field ~for example, a magnetic field! which depends on time
but is uniform in space. The globally-conserved phase or
ing is accessible in experiment. Consider the sublimati
deposition dynamics of a solid and its vapor in a small clo
vessel kept at a constant temperature below the me
point. As the acoustic time scale in the gas phase is s
compared to the coarsening time, the gas pressure~and, con-
sequently, density! remain uniform in space, changing on
in time. This character of mass transport in the vapor ph
makes the coarsening dynamics conserved globally ra
than locally. An important characteristic of globally co
served dynamics is interface-controlled kinetics, in contr
to the bulk-diffusion-controlled kinetics typical for locall
conserved systems. Interface-controlled kinetics was inve
1063-651X/2002/65~4!/046117~13!/$20.00 65 0461
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gated in the context of growth of small platinum particl
supported on alumina substrates in an oxidizing environm
@8#. There are additional examples of cluster growth on s
faces @9#, where it was found possible to single out th
interface-controlled kinetics@10#. There is also strong evi
dence in favor of globally conserved interface-controll
transport during the coarsening of clusters in granular po
ders driven by a low-frequency electric field@11,12#.

Part of the theoretical importance of globally conserv
phase ordering lies in the fact that it enables an acces
off-critical quenches in the simpler model A dynamics~with
global conservation!. Thus, it allows one to determine whic
characteristics of the system depend on the volume~or area!
fraction « and which do not.

Dynamic renormalization group arguments show that g
bal conservation should not change the growth law@13#. This
early result was confirmed by particle simulations with sh
range correlations in the initial conditions: for critical («
51/2) @6,14# and for off-critical («,1/2) @4# quench. Recent
phase field simulations of systems with long-range~power-
law! correlations in the initial conditions have also show
dynamic scale invariance with the same growth exponena
51/2 @7#. Therefore,a51/2 independently of«. On the
other hand, the autocorrelation function@4,15# and persis-
tence exponent@15# were found to be« dependent.

Globally conserved dynamics are related to a wide ra
of multiphase coarsening systems. Sire and Majumdar@4#
showed that in the large-q limit the dynamics of theq-state
Potts model are equivalent to the dynamics of the globa
conserved model with an area fraction«51/q. The large-q
limit of the Potts model is of practical importance as it d
scribes correctly some of the dynamic characteristics of
soap froths@16# and of the coarsening of polycrystalline m
terials @17#.

In the limit of a vanishing volume fraction of the minorit
phase the late stage of coarsening is describable by the m
©2002 The American Physical Society17-1
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field theories of Ostwald ripening. Lifshitz and Slyozov@18#
developed such a theory for the bulk-diffusion-controlled~or
locally conserved! dynamics. They showed that the size d
tribution function of the minority domains approaches,
large times, a self-similar form. Correspondingly, the avera
size of the minority phase domains grows with time liket1/3.
Following the seminal work by Lifshitz and Slyozov@18#,
Wagner developed a similar mean-field theory for t
interface-controlled~globally conserved! Ostwald ripening
@19#. The Wagner’s theory yields a growth lawt1/2 for the
average domain size, and a different~broader! shape of the
scaled distribution function. We shall refer to this scaled d
tribution function as the Wagner distribution. More recent
it was shown that interface-controlled Ostwald ripening a
pears in the sharp-interface limit of scalar Ginzburg-Land
equations~and its modifications! with a global conservation
law @2–5,20#.

Although the simple theories of Lifshitz-Slyozov an
Wagner were developed more than 40 years ago, they
still very useful in phase ordering theory. For example, S
and Majumdar@4# employed the Wagner distribution to ca
culate the equal-time pair correlation function. Lee a
Rutenberg@15# used the two theories of Ostwald ripening f
calculating the autocorrelation exponent and persistence
ponent for the locally and globally conserved systems.

Many works were devoted to extensions of the Lifshi
Slyozov theory to finite volume fractions. Already Lifshit
and Slyozov@18# made an attempt to go beyond their simp
model and account for coalescence. Later it became c
that, in the locally conserved systems, the dominant ef
unaccounted for by the simple theory is interdomain corre
tions, rather than coalescence. At small area fractions,
relative role of correlations is of order«1/2 @21#, while the
relative role of coalescence is of order«. Therefore, an ac-
count of coalescence without a proper account of correlat
is an excess of accuracy.

The situation is quite different in globally conserved sy
tems, and this fact has not been recognized until now. C
relations between neighboring domains areexponentially
small in this case@3,5#. Therefore, coalescence is expected
give the dominant correction to the theory of Wagner@19#.
We shall report numerical simulations that show a stro
effect of coalescence at moderate«. Specifically, we find
that, at large times, the size distribution function of the m
nority domains has a self-similar form with the ‘‘norma
growth exponent 1/2. The scaled distribution function, ho
ever, strongly differs from the Wagner distribution. We a
tribute this difference to coalescence and develop a theor
Ostwald ripening that takes coalescence into account.

The outline of the rest of the paper is the following.
Sec II, we briefly review the phase field model of globa
conserved phase ordering: a scalar Ginzburg-Landau e
tion with a global conservation law. The sharp-interfa
asymptotic limit of this equation is introduced and reduc
in two dimensions ~2D!, to a simpler model of area
preserving motion by curvature. The criteria for the valid
of this reduction are obtained and presented in Appen
The model of area-preserving motion by curvature is use
obtain dynamic scaling laws for the characteristic coarsen
04611
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length and for the effective magnetic field. The results of
phase field simulations for the critical quench («50.50) and
off-critical quench («50.25) are presented and analyzed
Sec. III. In Sec. IV, a theory of Ostwald ripening is deve
oped. The theory leads to a nonlinear integrodifferen
equation for the scaled distribution function. The solution
this equation is in good agreement with the scaled size
tribution function found in the phase field simulations.
Sec. V, we summarize our results.

II. PHASE FIELD MODEL AND SHARP-INTERFACE
LIMIT

Globally conserved phase ordering dynamics are desc
able by a simple phase field model@3,4,6#. In this model the
free energy functional has the Ginzburg-Landau form,

F@u#5E F d

2m
~¹u!21V~u!1HuGddr , ~1!

and the dynamics follow a simple gradient descent,

] tu52m
dF

du
5d¹2u1m@u2u32H~ t !#. ~2!

Either no flux or periodic boundary conditions can be us
In Eqs.~1! and~2! u(r ,t) is the coarse-grained order param
eter field,V(u)5(1/4)(12u2)2 is a symmetric double-wel
potential,d is the diffusion coefficient,m is the characteristic
rate of relaxation of the fieldu to its stable equilibrium val-
ues, andd is the dimension of space. The effective unifor
magnetic fieldH(t) changes in time so as to impose th
global conservation law,

^u~r ,t !&5L2dE u~r ,t !ddr5const, ~3!

whereL is the system size and the integration is carried
over the entire system. Integrating both sides of Eq.~2! over
the entire system and using Eq.~3! and the boundary condi
tions we obtain

H~ t !5^u2u3&5L2dE @u~r ,t !2u3~r ,t !#ddr . ~4!

Therefore, Eq.~2! takes the form

] tu5d ¹2u1m ~u2u3!2m^u2u3&, ~5!

a globally constrained Ginzburg-Landau equation~GLE!.
From now on we shall concentrate on the two-dimensio
case.

At late stages of the coarsening process, the system
sists of domains of ‘‘phase 1’’~whereu is close to21) and
‘‘phase 2’’ ~whereu is close to 1) separated by domain wal
The domain walls can be treated as sharp interfaces@5,22#, as
their characteristic widthl5(d/m)1/2 is much smaller than
the characteristic domain sizel (t) that grows with time. At
this stageH(t) is already small,H(t)!1, and slowly vary-
ing in time. The phase field in the phases 1 and 2 is alm
7-2
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PHASE ORDERING WITH A GLOBAL CONSERVATION . . . PHYSICAL REVIEW E65 046117
uniform and rapidly adjusting to the value ofH(t), so u
.212H(t)/2 and u.12H(t)/2 in the phases 1 and 2
respectively. Under these conditions, the so called‘‘sha
interface theory’’ holds. The normal velocity of the interfa
vn is given by@5#

vn~s,t !5d k~s,t !1~d m!1/2gH~ t !, ~6!

wheres is a coordinate along the interface,k(s,t) is the local
curvature, andg523/A2. A positivevn corresponds to the
interface moving towards phase 1, while a positivek corre-
sponds to an interface that is convex towards phase 2.
dynamics ofH(t) are described by@5#

Ḣ~ t !5
4L~ t !

L2
@dk~s,t !1~dm!1/2gH~ t !#. ~7!

Here k(s,t) is the interface curvature averaged over t
whole interface,

k~s,t !5
1

L~ t ! R k~s,t !ds, ~8!

andL(t)5r ds is the total perimeter of the interface. Equ
tions ~6! and ~7! provide a general sharp-interface formul
tion for the GLE with a global conservation law.

Let us denote byA(t) the total area of phase 2,

A~ t !5E
u(r ,t).0

d2r .

Equations~6! and ~7! can be used to calculate the rate
change ofA(t),

Ȧ~ t !5 R vn~s,t !ds5L~ t !@dk~s,t !1~dm!1/2gH~ t !#.

~9!

Using Eqs.~7! and ~9! we obtain:Ḣ54Ȧ/L2, which yields
the global conservation law:

A~ t !2
L2H~ t !

4
5const. ~10!

The second term in Eq.~10! corresponds to the bulk orde
parameteru being biased byH(t). One can use Eq.~10!
instead of Eq.~7! in the general sharp-interface formulatio
of the problem.

In some important cases this formulation can be sim
fied further@5,7,23#. When the two terms on the right-han
side of Eq.~9! approximately balance each other,

H~ t !.2
1

g S d

m D 1/2

k~s,t !, ~11!

the area of each of the two phases remains constant. In
case Eq.~6! takes the form

vn~s,t !5d@k~s,t !2k~s,t !#. ~12!
04611
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Dynamics~12! are known as area-preserving motion by cu
vature in 2D, and as volume-preserving motion by mean c
vature in 3D@3,5,24#. Due to the presence of the nonloc
term k̄ this model is different from the Allen-Cahn equatio
@25# vn5d k, which represents the sharp-interface limit f
nonconserved~model A! dynamics@1#.

A simple example where the area-preserving dynam
cannotbe used is the dynamics of a single circular domain
the minority phase in a ‘‘sea’’ of the majority phase@5,20#.
Another example is the dynamics of a ‘‘donut:’’ a sing
domain of the minority phase with an inclusion of a major
phase domain@26#. Therefore, the first question we need
address concerns the general conditions under which
area-preserving dynamics, Eq.~12!, represent an accurate ap
proximation to the more general sharp-interface theory, E
~6! and ~7!. These conditions are derived in Appendix.

Now we employ the area-preserving model and do sim
dynamic scaling analysis.~In the rest of the paper we ar
using dimensionless variables and putd5m51.! For critical
quench we haveH(t)50 andk(s,t)50 because of symme
try between the two phases~we neglect finite-size effects!.
Therefore, the globally conserved dynamics for critic
quench areidentical to the nonconserved~modelA) dynam-
ics. Using the Allen-Cahn equationvn(s,t)5k(s,t), one ar-
rives at the well-known scaling lawl (t);t1/2 @1#.

Turning to the off-critical quench, we notice that, und
the scaling assumption, the interface velocity can be e
mated asvn;dl/dt. Each of the two terms on the right-han
side of Eq.~12! is of order 1/l (t). Equating and integrating
we again obtainl (t);t1/2. Therefore, global conservatio
does not change the dynamic scaling forany area fraction.
This result was previously obtained by dynamic renormali
tion group arguments applied to Eq.~5! ~with a Gaussian
white noise term! @13#, and by particle simulations@4#. For
the off-critical dynamics of H(t) we have: uH(t)u
5u^k(s,t)&/gu;1/l (t);t21/2.

Though the dynamic exponent is independent of the a
fraction, other characteristics can depend on it. In the follo
ing section we report numerical simulations that addr
area-fraction-dependent quantities.

III. NUMERICAL SIMULATIONS

We performed extensive simulations by directly solvi
Eq. ~5! with initial conditions in the form of ‘‘white noise.’’
The simulations were done for two different values of t
area fraction of the minority phase:«50.50, and«50.25,
corresponding to a critical and off-critical quench, respe
tively. In both cases the results were averaged over ten
ferent samples. Equation~5! was discretized and solved on
102431024 domain, with mesh sizeDx5Dy51 and peri-
odic boundary conditions. The coarsening process was
lowed up to a timet53000. An explicit Euler integration
scheme was used to advance the solution in time, and
Laplace operator was discretized by second-order central
ferences. A time stepDt50.1 was required for numerica
stability. The accuracy of the numerical scheme was mo
tored by checking the~approximate! conservation law~10!
of the general sharp-interface theory. It was found that t
7-3
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CONTI, MEERSON, PELEG, AND SASOROV PHYSICAL REVIEW E65 046117
conservation law is obeyed with an accuracy better t
0.02% fort.4 and better than 0.008% fort.30 in the criti-
cal quench case. In the off-critical quench the approxim
conservation law~10! is obeyed with an accuracy better tha
1% for t.30. To avoid any misunderstanding here and in
following we notice that, in all cases, theintegrated order
parameter@see Eq.~3!# is conserved exactly by the numer
cal scheme.

It is convenient to introduce an auxiliary density fie
r(r ,t)5(1/2)@u(r ,t)11#. The minority phase is identified
as the locus wherer(r ,t)>1/2. Typical snapshots of th
coarsening process are shown in Fig. 1 for the criti
quench, and in Fig. 2 for the off-critical quench. For t
critical quench the system consists of interpenetrating
mains of the two phases. For the off-critical quench the m

FIG. 1. Snapshots of globally conserved coarsening for crit
quench. The upper row corresponds tot55.2 ~left! and 32.3~right!,
the lower row tot5204.8~left! and 1305.5~right!.

FIG. 2. Snapshots of globally conserved coarsening for
critical quench with area fraction«50.25. The upper row corre
sponds tot55.2 ~left! and 32.3~right!, the lower row tot5204.8
~left! and 1305.5~right!.
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phology is that of Ostwald ripening@27#: larger domains of
the minority phase grow at the expense of smaller ones
the minority phase area fraction is not very small, bina
~and even triple! coalescence events are clearly seen in F
2. Overall, the coarsening morphologies resemble those
served for locally-conserved system: in numerical solutio
of the Cahn-Hilliard equation@28# and in particle simulations
@29#. An important difference is an apparent absence of c
relations between neighboring domains in Fig. 2.

To analyze the coarsening dynamics, the following qu
tities were sampled and averaged over the ten initial con
tions.

~1! The area of phase 2.
~2! The circularly averaged equal-time pair correlati

function,

C~r ,t !5
^r~r 8,t !r~r 81r ,t !&2^r~r 8,t !&2

^r2~r 8,t !&2^r~r 8,t !&2
. ~13!

~3! The characteristic coarsening length scalel (t), deter-
mined from the conditionC( l ,t)51/2.

~4! The effective magnetic fieldH(t) computed from Eq.
~4!.

~5! The size distribution function of the minority phas
domains~for the off-critical quench!.

For critical quench we found that the area of the minor
phase is constant with an accuracy better than 0.03% a
times. The situation is quite different for the off-critica
quench. Here there is a systematic trend in the area frac
of the minority phase. Still, with time this quantity ap
proaches a constant value. Deviations from this cons
value become less than 3% fort.100. This approximate
area conservation plays a crucial role in the theory of O
wald ripening~see Sec. IV!.

Figure 3 shows, on a single graph, the scaling forms
the correlation functionC(x), wherex5r / l (t), for the criti-
cal and off-critical quench. Thel (t) dependence is presente

l

-

FIG. 3. Scaled correlation function obtained by numerical sim
lations with the GLE subject to a global conservation law for tim
t.15. The solid line isC(x) for critical quench, and the dashed lin
is C(x) for off-critical quench with area fraction«50.25. The dot-
ted ~dashed-dotted! line representsC(x) obtained in particle simu-
lations of globally conserved@6# ~nonconserved@30#! dynamics for
critical quench.
7-4
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PHASE ORDERING WITH A GLOBAL CONSERVATION . . . PHYSICAL REVIEW E65 046117
in Fig. 4. A comparison of the scaling formsC(x) with those
obtained in particle simulations of globally conserved@6#
and nonconserved@30# dynamics for critical quench is als
shown. The three curves for the critical quench almost co
cide. For off-critical quench, theC(x) curve is slightly dif-
ferent from the curves for the critical quench. A similar we
dependence of the scaled correlation function on the a
fraction of the minority phase was observed in locally co
served systems@28,29,31#.

Figure 4 shows corrected power-law fitsl (t)5 l 01bta

that yield a50.50, l 050.5, and b51.2 for the critical
quench, anda50.51, l 051.3, andb50.9 for the off-critical
quench. A puret1/2 power-law line serves as a reference f
the expected late-time dynamic behavior. Therefore,l (t)
obeys the expectedt1/2 dynamical scaling law, in agreemen
with the predictions of the dynamic renormalization gro
analysis@13# and area-preserving sharp-interface theory. T
difference in the values of the amplitudesb again indicates a
dependence on the minority phase area fraction.

The time history of 1/uH(t)u for the off-critical quench is
presented in Fig. 5. The data is fitted by a corrected po
law: 1/uH(t)u5a1cta with a57.4, c52.3, anda50.51.
Also shown is a 2.3t1/2 power law, serving as a reference
the expected late-time dynamics. We conclude thatuH(t)u
;t21/2, as predicted by the sharp-interface theory. The s
nificance of the value of the amplitudec will be discussed in
Sec. IV in the context of our theory of Ostwald ripening wi
coalescence. One can distinguish in Fig. 5 small ‘‘fluctu
tions’’ of 1/uH(t)u around a smooth trend.@This is in contrast
to the l (t) dependence where no fluctuations are observ#
To interpret these fluctuations we use Eqs.~11! and ~A5! to
obtain: 1/uH(t)u;L(t)/N2(t). L(t) is a continuous function
of t, whereasN2(t) behaves discontinuously at the time m
ments when domains disappear due to shrinking and mer
events. ThusH(t) serves as a ‘‘domain counter.’’

For critical quench,H(t) exhibits very small irregular
fluctuations around zero. The typical values ofH(t) in this
case are of the order of 1025, and we interpret these fluctua
tions as finite-size effects.

FIG. 4. Characteristic coarsening lengthl vs time for the critical
quench ~circles!, and off-critical quench with area fraction«
50.25 ~squares!. The two solid lines are corrected power-law fi
l (t)5 l 01bta with a50.50, l 050.5, andb51.2 for the critical
quench, anda50.51, l 051.3, and b50.9 for the off-critical
quench. The dotted line shows a puret1/2 power law.
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As we have shown, the scaled correlation function o
weakly depends on the area fraction. A much more sensi
diagnostics of the off-critical quench dynamics is provid
by the size distribution function of the minority phase d
mains. We found that, at late times, this function exhib
dynamic scaling. Figure 6 shows the scaled formFnum of the
distribution function obtained in the simulations with th
GLE. The scaled variable on the horizontal axis of Fig. 6

FIG. 5. 1/uH(t)u vs time for an off-critical quench with area
fraction«50.25~circles!. The solid line is a corrected power-law fi
1/uH(t)u5a1cta with a57.4, c52.3, anda50.51. The dotted
line is 2.3t1/2 power law.

FIG. 6. Scaled distribution function of domain sizesF(j),
wherej5R/t1/2. The diamonds representFnum(j): the scaled dis-
tribution obtained in the simulations with the GLE for timest
.120. The error bars show~twice! the variance of the scaled dis
tribution functions for 13 time moments in the interval 120,t
,2900. The dotted line is the Wagner distributionFW(j), Eq. ~14!,
for the same area fraction«50.25. In order to show it on the sam
graph withFnum we had to multiply it by 0.5. The dashed and sol
lines show the distributionsF0(j) and F1(j), respectively, pre-
dicted by the theory of Ostwald ripening with coalescence, p
sented in Sec. IV. These distributions represent the zero and
iterations of the iteration procedure@see Sec. IV, Eq.~44!# for b
50.93 that corresponds to«.0.25.
7-5
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CONTI, MEERSON, PELEG, AND SASOROV PHYSICAL REVIEW E65 046117
j5R/t1/2, where the effective radius of each domain is d
fined asR5(Ad /p)1/2 andAd is the domain area. Functio
Fnum was obtained, at each moment of time, by multiplyi
the values of the distribution function, found in the simu
tions, by t3/2. The dynamic exponents 1/2 and 3/2 are t
same as in the classical theory of Wagner@19#.

Here is a more detailed account of our calculation of
scaled distribution function. We chose for sampling 13 tim
moments in the interval 120,t,2900. The domain statistic
is obviously better at earlier times of this interval, and
deteriorates at later times, as many domains shrink and
appear. On the other hand, the dynamic exponent 1/2 sh
up, with a good accuracy, only at relatively late times~see
Figs. 4 and 5!. Therefore, we had to include the relative
late times in our sampling, which led to relatively big err
bars in Fig. 6.

The area fraction«50.25, used in our simulations, i
moderately large. Therefore, one could expect significant
viations of the scaled distribution function, found nume
cally, from the Wagner distribution@19# corresponding to the
same area fraction~that is, having the same second momen!.
The Wagner distribution has the following form:

FW~j!5C«
j

~j2A2!4
expS 2

2A2

A22j
D ~14!

for j,A2, and FW(j)50 for j>A2. The normalization
constant

C5
1

p@~2e2!211Ei~22!#
.16.961,

where Ei(. . . ) is theexponential integral function@32#.
The two distributions,Fnum(j) andFW(j), are shown in

Fig. 6. One can see that the difference between them is e
mous~in order to show the Wagner distribution on the sa
graph withFnum, we had to multiply it by a factor of 0.5!.
Therefore, at moderate area fractions, the Wagner’s theo
inapplicable.

It is instructive to compare the zero momentsM0 of the
two distributions. The zero moment is the amplitude of t
scaling law for the number density of domains at large tim
n(t)5M0t21. We obtainedM0.4.7231022 for Fnum and
M0.1.4331021 for FW . Therefore, for«50.25 the Wag-
ner distribution overestimates the number of domains at
times by a factor of 3. An additional difference is the pr
nounced tail inFnum that extends much further than the ed
of the compact support of the Wagner distribution. Coal
cence provides a natural explanation to these two facts:
lescence events reduce the total number of domains and
duce domains of progressively larger size. We shall see in
next section that an account of coalescence leads to a
quantitative agreement between theory and simulations.

IV. THEORY OF OSTWALD RIPENING
WITH COALESCENCE

In this section we present a theory of the globally co
served~interface-controlled! Ostwald ripening that account
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for coalescence. One of our assumptions is that each dom
can be represented by an equivalentcircular domain, or
droplet, the area of which is equal to the area of the dom
We shall denote byf (R,t) the distribution function of the
droplets with respect to their radii.f (R,t) is normalized by
the condition*0

` f (R,t)dR5n(t), wheren(t) is the number
density of the droplets. We start with a brief review of th
‘‘classical’’ theory that neglects coalescence and goes bac
Wagner@19#. Then we derive a kinetic equation that accoun
of coalescence. We shall focus on the long-time, self-sim
asymptotic solutions to that kinetic equation, find the so
tion by an iteration procedure and compare it with the res
of the phase-field simulations.

A. Ostwald ripening without coalescence: A brief review

At a late stage of coarseninguH(t)u!1, so there is no
nucleation of new domains. Then, neglecting coalescen
one can write a simple continuity equation inR space for the
size distribution function of domains, or droplets,

] t f 1]R~Ṙf !50. ~15!

When criterion~A6! is satisfied, the dynamics are descri
able by the area-preserving motion by curvature~12! ~where
we putd51). This leads immediately to

Ṙ5
1

Rc~ t !
2

1

R
, ~16!

where the time-dependent critical radiusRc(t)
5A2/„3uH(t)u… is determined, at a late stage of coarseni
by the conservation of the total area of the minority phas

pE
0

`

R2f dR5«5const. ~17!

Equations ~15!–~17! represent the classical model o
interface-controlled Ostwald ripening. This model was fo
mulated by Wagner@19# by analogy with the theory of Lif-
shitz and Slyozov@18# developed for the locally conserve
~diffusion-controlled! dynamics. Using Eqs.~15!–~17!, one
obtains

Rc~ t !5

E
0

`

R f dR

E
0

`

f dR

5^R~ t !&, ~18!

where ^R(t)& is the time-dependent average radius of t
droplets.

Droplets withR.Rc(t) grow at the expense of droplet
with R,Rc(t) that shrink. The late-time asymptotic behavi
described by Eqs.~15!–~17! is the following@19#. The criti-
cal radius grows with time~this corresponds to the decrea
with time of the effective magnetic field that plays the role
supersaturation!. As a result, a droplet that was growing at a
early time begins to shrink at a later time. Since all the qu
tities are position independent, this model represents a m
7-6
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PHASE ORDERING WITH A GLOBAL CONSERVATION . . . PHYSICAL REVIEW E65 046117
field theory. It should be noticed that the mean-field appro
mation is much more accurate for the globally conserv
~interface-controlled! Ostwald ripening than for the locally
conserved~diffusion-controlled! Ostwald ripening@5#. First,
in the globally-conserved case, the ‘‘mean field’’H(t) is the
actual field in the system. This is in contrast to the diffusio
controlled Ostwald ripening@18#, where a mean-field de
scription of the supersaturation is an approximation va
only when the typical distances between the droplets are
large compared to the typical droplet radius. The second
ference concerns the role of correlations. In the locally c
served case, correlations between droplets result from
Laplacian screening effect, and their relative contribution
the size distribution function is of order«1/2 ~see, e.g., Ref.
@21#!. The effect of coalescence scales like« ~see below! so,
at small«, correlation effects should be much less sign
cant. By contrast, in the interface-controlled case direct c
relations between droplets are exponentially small, and
nificant correlations can be caused only by coalesce
events. Therefore, in the interface-controlled case, it is leg
mate to account for coalescence while neglecting corr
tions.

Wagner@19# obtained a self-similar solution to Eqs.~15!–
~17! ~the Wagner distribution! that corresponds to a long
time asymptotics of the initial-value problem. The similari
ansatz is

f ~R,t !5
1

t3/2
CbS R

t1/2D , Rc~ t !5
t1/2

b
, ~19!

whereb is a constant number. The scaled distributionCb(j)
obeys an ordinary differential equation,

S 2
j

2
1b2

1

j DCb8 ~j!1S 2
3

2
1

1

j2D Cb~j!50. ~20!

The total area conservation~17! leads to normalization con
dition

pE
0

`

j2Cb~j!dj5«5const. ~21!

Formally solving Eq.~20!, one actually obtains afamily of
solutions parametrized byb. For A2<b<2A2/3 these solu-
tions have compact support: they are positive on an inte
0,j,jmax(b), and zero elsewhere. Similar solutions in 3
were investigated in Refs.@5,20,33#. We call these solutions
localized. For 0,b,A2 the solutions of Eq.~20! are ex-
tended: they have an infinite tail. These solutions can
written as const3C0b(j), where

C0b~j!5
j

~j222b j12!2

3expS 2
2b

A22b2
arctan

j2b

A22b2D . ~22!
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Extended solutions fall off likej23 asj→`. As a result, the
integral in Eq.~21! diverges logarithmically, so the extende
solutions are non-normalizable. Still, as we shall see, t
play a crucial role in the theory of Ostwald ripening wi
coalescence.

Which of the similarity solutions is selected by the d
namics ~that is, represents a long-time asymptotics of t
initial value problem!? It turns out that selection is ‘‘weak,’
that is, determined by the initial conditions. The Wagner d
tribution is selected for~normalizable! extendedinitial distri-
butions. On the contrary, if the initial distributionf (R,t
50) has compact support, one of thelocalizeddistributions
is selected. The selection is determined by the asymptotic
f (R,t50) near the upper edge of its support@5,20,33#.

However, this weak selection rule was obtained in t
framework of the classical formulation of the problem, Eq
~15!–~17!. One can expect thatstrongselection~independent
of the initial conditions! can be obtained if one goes beyon
the classical formulation. Indeed, it was shown in Ref.@34#
~see also@35#! that an account of fluctuations leads to stro
selection. Fluctuations produce a tail in the time-depend
distribution function and drive the solution towards the Wa
ner distribution. We shall see in the following that an accou
of coalescence also leads to strong selection, even in
absence of fluctuations.

B. Kinetic equation with coalescence

We shall now take into account the processes of bin
coalescence. Coalescence events occur when two dro
contact each other. Within the framework of the GLE, t
positions of the droplet centers remain fixed. Therefore,
coalescence to happen, at least one of the droplets mu
expanding. Consider a droplet of radiusR1,R,R11DR1.
The number density of such droplets isf (R1 ,t)DR1. Now
consider another droplet of radiusR2,R,R21DR2 in the
vicinity of the first droplet. If Ṙ11Ṙ2.0 then, during the
time interval Dt, the distance between the boundaries
these droplets will decrease by (Ṙ11Ṙ2)Dt. If the distancer
between the centers of the droplets obeys the double ineq
ity

~R11R2!<r<~R11R2!1~Ṙ11Ṙ2!Dt ~23!

~which assumes that the conditionṘ11Ṙ2.0 is fulfilled!,
then these two droplets will collide during the time interv
Dt. Therefore, for the two droplets to collide, the center
the second droplet should be located within a circular ri
concentric with the first droplet, with radiusR11R2 and
width (Ṙ11Ṙ2)Dt. The area of this ring is equal to

2p~R11R2!~Ṙ11Ṙ2!Dt. ~24!

Hence, the average number of such second droplets is e
to

2M ~R1 ,R2! f ~R2 ,t !DR2Dt,

where
7-7
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CONTI, MEERSON, PELEG, AND SASOROV PHYSICAL REVIEW E65 046117
M ~R1 ,R2!5p~R11R2!~Ṙ11Ṙ2!u~Ṙ11Ṙ2!.

The total number of the collision events per unit area is eq
to

@2M ~R1 ,R2! f ~R2 ,t !DR2Dt# f ~R1 ,t !DR1 . ~25!

Each collision leads to coalescence: disappearance of a d
let of radiusR1 and a droplet of radiusR2, and creation of a
new droplet.

Now we make two assumptions that will enable us
construct a closed theory. First, we assume that the area
new droplet, formed by a binary coalescence event, is e
to the sum of the areas of the two merging droplets. Seco
we assume that new dropletinstantaneouslybecomes circu-
lar @36#, so its radius is (R1

21R2
2)1/2. The kinetic equation for

the size distribution function includes the rates of gains a
losses of droplets by coalescence. This leads to the follow
equation:

] t f 1]R~Ṙf !52
1

2E0

`E
0

`

$2M ~R1 ,R2!

3@d~R2R1!1d~R2R2!2d~R

2AR1
21R2

2!#3 f ~R1 ,t ! f ~R2 ,t !dR1dR2%,

~26!

whered( . . . ) is theDirac’s delta function and the factor 1/
is introduced in order to avoid counting each coalesce
event twice. Performing integration withd(R2R1) and
d(R2R2) and taking into account the symmetry
M (R1 ,R2) under a transposition of its arguments,

M ~R1 ,R2!5M ~R2 ,R1!,

we obtain

] t f 1]R~Ṙf !522 f ~R,t !E
0

`

M ~R,R1! f ~R1 ,t !dR1

1E
0

`E
0

`

M ~R1 ,R2!d~R2AR1
21R2

2!

3 f ~R1 ,t ! f ~R2 ,t !dR1 dR2 . ~27!

Integration of the right-hand side of Eq.~27! over R2 dR
yields zero, so the new kinetic equation preserves the c
servation law~17! as it should. In addition, the simple rela
tion ~18! continues to hold. Integrating the right-hand side
Eq. ~27! overdR, and overR dR, respectively, one can show
that the coalescence term reduces the number density o
droplets and the total interface length. Moreover, the n
equation preserves the dynamic scaling. Indeed, if so
f (R,t) andRc(t) give a solution to Eqs.~27!, ~17!, and~18!,
then f 8(R,t)5h3f (hR,h2t) and Rc8(t)5h21Rc(h

2t) give
another solution to the same equations. This invariance u
a stretching transformation implies the existence of a s
similar solution that will be considered in the ne
subsection.
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While deriving Eq.~27!, we neglected effects of interac
tions of three droplets. By this we refer to cases where th
are three closely lying droplets. In these cases triple coa
cence events may occur. In addition, an excluded area in
ring ~23! appears. The effects of this excluded area, and
the triple coalescence events were not taken into accoun
our theory. These effects are expected to be of order«3,
while the effects of binary coalescence events are of or
«2. Therefore, Eq.~27! is expected to be valid for small are
fractions«. We shall see, however, that a very good accura
is obtained even for the moderate value of«50.25 used in
our simulations, when triple coalescence events do oc
~see Fig. 2!.

Another limitation of our theory concerns the large-R tail
of f (R,t). The tail shape is affected by higher-order coale
cence events unaccounted for in our theory. This limitation
not very important in practice. The main contribution to t
critical radiusRc comes, for normalizable distributions, b
the ‘‘body’’ of the distribution function, rather than by th
tail.

We conclude this subsection by a brief discussion o
different type of coalescence: Brownian coalescence. F
lowing the pioneering work of Smoluchowski@37#, Binder
and Stauffer@38# suggested a mean-field scenario of pha
separation in alloys in which clusters of the minority pha
are regarded as Brownian particles: they perform rand
walk in space. When two clusters collide, they merge int
larger single cluster. The corresponding kinetic equation
cludes an integral term whose general structure resem
that of the integral term in Eq.~27!, but with a different
kernel M (R1 ,R2). If the cluster diffusivity is a power-law
function of the cluster size, one arrives at a self-similar
lution for the size distribution function of the droplets. A
important further development was the work of Siggia@39#
who considered hydrodynamic interactions between r
domly moving and coalescing droplets in phase separa
binary fluids. Following the work of Siggia, the Brownia
coalescence in binary fluids has been extensively stud
theoretically and experimentally. Among important issu
here is a crossover from Ostwald ripening~the Lifshitz-
Slyozov-Wagner mechanism! to Brownian coalescence
@1,39,40#, plethora of hydrodynamic interactions in the pr
cess of coalescence@39,41,42#, scaling violations@43#, etc.
In parallel, Brownian coalescence has been investigate
the context of coarsening of clusters of atoms or vacan
diffusing on surfaces, following particle deposition@44#. It is
clear that Brownian coalescence is different in its nat
from the coalescence process considered in this work
contrast to Brownian coalescence, droplets in our system
not move: they coalesce only because they grow.

C. Self-similar solution with coalescence

Equations~27! and ~17! admit the same similarity ansat
as Eqs.~15! and ~17!:

f ~R,t !5
1

t3/2
FS R

t1/2D ~28!
7-8
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and

Rc~ t !5b21t1/2, ~29!

where b is again an unknown yet constant number. T
scaled distribution functionF(j) obeys the following inte-
grodifferential equation:

S 2
j

2
1b2

1

j DF8~j!1S 2
3

2
1

1

j2D F~j!

522F~j!E
0

`

w~j,j1!F~j1!dj1

1E
0

`E
0

`

w~j1 ,j2!d~j2Aj1
21j2

2!F~j1!F~j2!dj1dj2

~30!

subject to normalization condition

pE
0

`

j2F~j!dj5«. ~31!

In Eq. ~30! we denoted

w~j1 ,j2!5p~j11j2!S 2b2
1

j1
2

1

j2
D3uS 2b2

1

j1
2

1

j2
D ,

~32!

whereu( . . . ) is thetheta function. It is convenient to re
write Eq. ~30! in a symbolic form

LbF5Nb@F#, ~33!

where

LbF~j!5S 2
j

2
1b2

1

j DF8~j!1S 2
3

2
1

1

j2D F~j!,

~34!

and

Nb@F#~j!522F~j!E
0

`

w~j,j1!F~j1!dj1

1E
0

`E
0

`

w~j1 ,j2!d~j2Aj1
21j2

2!

3F~j1!F~j2!dj1dj2 . ~35!

One important property of Eq.~30! can be noticed imme
diately: the coalescence term vanishes identically at 0<j
,1/(2b). As a result, the scaled distribution function at
<j,1/(2b) should coincide~up to aj-independent multi-
plier! with one of the solutions of the classical Wagne
problem. A simple argument shows that parameterb, param-
etrizing this solution, should be less thanA2. Indeed, invert-
ing the linear operatorLb , we rewrite Eq.~33! as an integral
~rather than integrodifferential! equation,
04611
e

F~j!5Cb~j!F Ej

` Nb@F~j8!#dj8

S j8

2
2b1

1

j8
D Cb~j8!

1C1G ,

~36!

where functionsCb(j) were introduced in Sec. IV A andC1

is a constant. Unlessb,A2, the integral overdj8 diverges.
Therefore,Cb(j) should be one of theextendedsolutions
C0b(j), given by Eq.~22!. In addition, since the secon
term in the square brackets of Eq.~36! would lead to diver-
gence of the integral appearing in the normalization con
tion ~31!, we must chooseC150. Hence, Eq.~36! reads

F~j!5C0b~j!E
j

` Nb@F~j8!#dj8

S j8

2
2b1

1

j8
D C0b~j8!

. ~37!

Integral equation~37! and normalization condition~31! make
a complete set. For a given«, the scaled distribution function
F5Fb(j) and parameterb5b(«) are uniquely determined
Therefore, an account of coalescence does provide st
selection to the problem of Ostwald ripening.

D. Solving Eqs.„37… and „31…

Our procedure for solving Eqs.~37! and~31! employs the
one-to-one correspondence between« andb. Therefore, one
can fix b and solve Eq.~37! by iterations forF5Fb(j).
The normalization condition~31! is not used at this stage
After a sufficiently accurate estimate forF5Fb(j) is ob-
tained, one employs Eq.~31! to calculate« that corresponds
to this b. Repeating this procedure for differentb, one ob-
tains the family of solutionsFb(j) and the dependence«
5«(b). Inverting this dependence, one arrives atb5b(«)
and finds the correspondence between« and scaled distribu-
tions Fb(j)5Fb(«)(j).

Now we introduce an iteration scheme that impleme
this idea. The scheme exploits the fact that, for the ex
solution of Eq.~37!,

F~j!5xC0b~j! at 0<j,
1

2b
, ~38!

wherex5x(b) is j independent and unknown in advanc
Let us introduce an auxiliary unknown functionf(j)
5x21F(j) @45#. By definition,

f~j!5C0b~j! at 0<j,
1

2b
. ~39!

In terms of the new functionf, Eq. ~37! becomes

f~j!5xC0b~j!E
j

` Nb@f~j8!#dj8

S j8

2
2b1

1

j8
D C0b~j8!

. ~40!

The iteration scheme for Eq.~40! is the following:
7-9
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fk11~j!5xkC0b~j!E
j

` Nb@fk~j8!#dj8

S j8

2
2b1

1

j8
D C0b~j8!

, ~41!

for k50,1,2, . . . . We use thearbitrariness ofxk and demand
that, at each iteration, Eq.~39! is satisfied,

fk11~j!5C0b~j! at 0<j,
1

2b
. ~42!

This implies

xk5F E1/(2b)

` Nb@fk~j!#dj

S j

2
2b1

1

j DC0b~j!G21

, ~43!

for k50,1,2, . . . ,. Equations~43! and ~41! define the itera-
tion process explicitly. If the sequencefk , k50,1,2, . . . ,
converges to a finite limitf(j), then the sequencexk ,k
50,1,2, . . . , converges to a finite~positive! numberx, and
we can findF(j)5xf(j). What is left is to use Eq.~31!
and compute the corresponding«. If the convergence of the
iteration scheme is fast enough, then

Fk~j!5xkfk~j! ~44!

and

«k~b!5pxkE j2fk~j!dj, k51,2, . . . , ~45!

give a good approximation to the solution already afte
small number of iterations.

We implemented this iteration procedure numerically.
it is clear from Eqs.~41!, ~43!, ~44!, and~45!, the numerics
involve only calculations of~double and triple! definite inte-
grals. We started with the trial functionf0(j)5C0b(j). The
advantage of this trial function is that it already satisfies E
~39!. We performed a detailed investigation of the conv
gence of this scheme for different values ofb up to iteration
k58. The results of this investigation~and proofs of conver-
gence of the integrals at infinity! will be presented in a sepa
rate publication. The main result is that, with this choice
the trial function, the convergence is very fast in the body
the scaled distribution function. For example, in the case
«50.25 the first iteration already gives an accurate res
Convergence in the tail is a more subtle issue that will
addressed separately.

The b(«) dependence, found by this procedure is sho
in Fig. 7. One can see that, as«→0, b→A2 from below.
Overall, this behavior is expected. Coalescence effects
come small at small area fractions and, as«→0, the scaled
distribution function should approach the Wagner distrib
tion. It is surprising, however, that for quite small« ~for
example, 0.01), the value ofb is still significantly different
from A2.

Figure 6 shows the scaled distribution function forb
50.93~which corresponds to«.0.25). The solid line shows
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the result of the first iterationF1(j). This result agrees wel
with the phase field simulations, even at the moderately la
value of «50.25. This is a strong evidence in favor of th
major role of coalescence in the interface-controlled Ostw
ripening. The dashed line is the trial functionF0(j). One
can see that this trial function~with b50.93) already gives a
fairly accurate estimate to the solution in the body of t
scaled distribution. Therefore, the non-normalizable
tended distributions~22! do play a special role in the theory
In the tail region the solution falls off more rapidly tha
C0b , so there is no problem with normalization conditio
~31!. The zero momentM0 corresponding to the once
iterated numerical solution~the solid line in Fig. 6! is equal
to 5.0831022, which is in good agreement with the valu
4.7231022 obtained in the simulations.

An independent estimate ofb at «50.25 is provided by
the dynamics of the effective ‘‘magnetic field’’H(t). The
area-preserving dynamics, Eq.~12!, imply that uH(t)u
.uA2k̄/3u. Assuming that all droplets have circular sha
~an assumption already used in our theory!, we haveuku
51/̂ R(t)&. Employing the similarity solution, we arrive a

FIG. 7. Parameterb versus« ~solid lines! as predicted by the
theory of Ostwald ripening with coalescence. This dependence
obtained by a single iteration applied to Eqs.~37! and ~31!. The
dashed line shows the limiting valueb5A2 expected at«→0. The
solid circle is the point found in our phase-field simulations.~a!
shows« in a logarithmic scale,~b! in a linear scale.
7-10



e

dy
e
se
a
n
a
ic
ur
a

l

ca
cl
ir
re

ng
se

th
f
ns
he
fo
ha
lf-
is

u-
a

hi

d
r
le
io
on
n
a
ra
c-
th
on
or
law

er
ro

er

ys-

s-
nce
ces
sic

ea-
-

ce

e

e

nd
ly,

on
lly
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uku5b/t1/2. Therefore, 1/uH(t)u;ct1/2, wherec53/(A2b).
For the corrected power-law fit shown in Fig. 5,c52.3. This
corresponds tob.0.92, which is remarkably close to th
value of 0.93 obtained by the iteration procedure.

V. CONCLUSIONS

We investigated globally conserved phase ordering
namics in systems with short range correlations. The num
cal simulations were done with a two-dimensional pha
field model: a Ginzburg-Landau equation with a glob
conservation law. The sharp-interface limit of this equatio
the area-preserving motion by curvature was introduced,
a criterion for its validity formulated. Assuming dynam
scaling within the model of area-preserving motion by c
vature, we obtained the 1/2 dynamic exponent for the ch
acteristic coarsening length scale~for critical and off-critical
quench!, and for the effective ‘‘magnetic field’’~for off-
critical quench!. Our numerical simulations for critica
quench and for an off-critical quench with area fraction«
50.25 confirm these scaling laws. The results for criti
quench coincide with earlier results, obtained by parti
simulations. The scaled form of the equal-time pa
correlation function is found to weakly depend on the a
fraction, similar to the locally conserved systems.

Recently, dynamic scale invariance and ‘‘normal’’ scali
have been reported in the same globally conserved coar
ing system, but forlong-range~power-law! correlations in
the initial conditions@7#. Our present results, combined wi
those of Ref.@7#, indicate ‘‘normal’’ scaling properties o
globally conserved systems for any generic initial conditio

The main focus of this work was on the dynamics of t
size distribution function of the minority phase domains
the off-critical quench. Our phase field simulations show t
this distribution function exhibits, at large times, a se
similar form. The scaled distribution function, however,
dramatically different from the well-known Wagner distrib
tion, despite the fact that correlations between domains
negligible in globally conserved systems. We attributed t
strong deviation to coalescence that provides, at small«, a
leading correction to the Wagner’s theory. We develope
theory of Ostwald ripening that takes into account bina
coalescence events. The theory possesses dynamic sca
variance and yields a nonlinear integrodifferential equat
for the scaled distribution function. For a given area fracti
the problem has a unique solution. Therefore, coalesce
renders a strong selection rule to the problem of Ostw
ripening: the scaled distribution is selected by the area f
tion of the minority domains. The scaled distribution fun
tion predicted by the theory is in good agreement with
scaled distribution obtained from the phase field simulati
for a moderate area fraction of 0.25. In addition, the the
accurately predicts the amplitude of the late-time power
of the effective magnetic fieldH(t). Deviations from the
classical Wagner’s theory remain significant even for v
low area fractions. Therefore, coalescence plays a major
in the interface-controlled Ostwald ripening.

We hope that the results of this work will stimulate furth
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experiments on globally conserved interface-controlled s
tems.
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APPENDIX: CRITERIA FOR THE AREA-PRESERVING
DYNAMICS

Let us find the general conditions under which the ar
preserving dynamics@Eq. ~12!# represent an accurate ap
proximation to the more general sharp-interface theory@Eqs.
~6! and~7!#. We first notice that in the general sharp-interfa
theory it is the quantityA(t)2L2H(t)/4, rather thanA(t),
that is conserved@5#. Hence, a necessary condition for th
validity of the area-preserving dynamics is simply

H~ t !!
A~ t !

L2
. ~A1!

Additional criteria are found in the following manner. W
notice that Eq. ~7! includes the same combinationd k̄
1(dm)1/2gH(t) as the one that appears on the right-ha
side of Eq.~9!. Therefore, a constancy or, more precise
slow variation ofA(t) implies a slow variation ofH(t). Cor-
respondingly, the term on the left-hand side of Eq.~7! should
be small in this case compared to each of the two terms
the right-hand side. We can exploit this fact and forma
solve Eq. ~7! perturbatively: H(t)5H (0)(t)1h(t), where
H (0)(t)52g21(d/m)1/2k̄, is the leading term, andh(t) is
the subleading term. SubstitutingH(t) into Eq.~7! and keep-
ing terms up to orderh(t) we obtain

h~ t !5
L2

4g~dm!1/2L~ t !
Ḣ (0)~ t !52

L2

4g2mL~ t !
k~s,t !

"

.

~A2!

The perturbation expansion is valid as long as

uh~ t !u!uH (0)~ t !u and
uh~ ṫ !u

~dm!1/2L~ t !
!

uh~ t !u

L2
.

Using the expressions forH (0)(t) and h(t) we see that the
dynamics described by Eqs.~6! and ~7! are ~approximately!
area preserving if the following two inequalities hold:

uk~s,t !
"

u

~dm!1/2L~ t !
!

uk~s,t !u

L2
, ~A3!

and

U d

dt
F k~s,t !

"

~dm!1/2L~ t !
GU!

uk~s,t !
"

u

L2
. ~A4!
7-11
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Now we can see why the area-preserving dynamics do
apply to a single circular droplet. In this case the zero or
of the perturbation theory would givek(s,t)51/R5const,
where R is the droplet radius. Therefore, criterion~A4! is
violated.

For a ‘‘donut’’ one hask(s,t)50. Therefore, neither o
the two criteria~A3! and ~A4! is obeyed, and the dynamic
are not area preserving. If the system consists ofN1(t) do-
mains of the majority phase andN2 ~t! domains of the mi-
nority phase, the Gauss-Bonet theorem@46# yields

k~s,t !5
2p@N1~ t !2N2~ t !#

L~ t !
, ~A5!

whereN1(t) does not include the large ‘‘sea’’ of the majorit
phase. We shall employ this relation in the following.

Let us check criteria~A1!, ~A3!, and~A4! for the ‘‘stan-
dard problem’’ of phase ordering, when the initial conditio
describe a disordered state with short-ranged correlati
We assume that the system exhibits, at late times, dyna
scale invariance. In other words, the characteristic dom
f.

y

.

r,

. B

.
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size l (t) is the only relevant length scale. For an off-critic
quench, the phase-ordering morphology is that of Ostw
ripening: competition of droplets of the minority phase, s
below. This implies the following scaling relations:k(s,t)

;1/l (t), k(s,t)
"

;d/ l 3(t), and L(t);N2(t) l (t);«L2/ l (t).
In addition,H(t);l/ l (t) andA5« L2. Using these relations
in any of the inequalities~A1!, ~A3!, or ~A4!, we arrive at

l

l ~ t !
!«. ~A6!

That is, the more general sharp-interface theory is reduc
to the area-preserving motion by curvature as long as
ratio between the interface width and the coarsening len
scale is much smaller than the area fraction of the mino
phase. If the coarsening system remains a two-phase sys
and if the system size is big enough, this condition holds
late times, for any nonzero area fraction@47#. Notice that, at
«!1 it takes more time for the system to reach the ar
preserving regime.
-
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